Metamath Proof Explorer


Theorem ss2abi

Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)

Ref Expression
Hypothesis ss2abi.1 ( 𝜑𝜓 )
Assertion ss2abi { 𝑥𝜑 } ⊆ { 𝑥𝜓 }

Proof

Step Hyp Ref Expression
1 ss2abi.1 ( 𝜑𝜓 )
2 tru
3 1 a1i ( ⊤ → ( 𝜑𝜓 ) )
4 3 ss2abdv ( ⊤ → { 𝑥𝜑 } ⊆ { 𝑥𝜓 } )
5 2 4 ax-mp { 𝑥𝜑 } ⊆ { 𝑥𝜓 }