Metamath Proof Explorer
Description: Inference of abstraction subclass from implication. (Contributed by NM, 31-Mar-1995) Avoid ax-8 , ax-10 , ax-11 , ax-12 . (Revised by Gino Giotto, 28-Jun-2024)
|
|
Ref |
Expression |
|
Hypothesis |
ss2abi.1 |
⊢ ( 𝜑 → 𝜓 ) |
|
Assertion |
ss2abi |
⊢ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ss2abi.1 |
⊢ ( 𝜑 → 𝜓 ) |
2 |
|
tru |
⊢ ⊤ |
3 |
1
|
a1i |
⊢ ( ⊤ → ( 𝜑 → 𝜓 ) ) |
4 |
3
|
ss2abdv |
⊢ ( ⊤ → { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } ) |
5 |
2 4
|
ax-mp |
⊢ { 𝑥 ∣ 𝜑 } ⊆ { 𝑥 ∣ 𝜓 } |