Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | ss2iun | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssel | ⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) | |
2 | 1 | ralimi | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) ) |
3 | rexim | ⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝑦 ∈ 𝐵 → 𝑦 ∈ 𝐶 ) → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) | |
4 | 2 3 | syl | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 → ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) ) |
5 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐵 ) | |
6 | eliun | ⊢ ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ↔ ∃ 𝑥 ∈ 𝐴 𝑦 ∈ 𝐶 ) | |
7 | 4 5 6 | 3imtr4g | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 → 𝑦 ∈ ∪ 𝑥 ∈ 𝐴 𝐶 ) ) |
8 | 7 | ssrdv | ⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ∪ 𝑥 ∈ 𝐴 𝐵 ⊆ ∪ 𝑥 ∈ 𝐴 𝐶 ) |