Metamath Proof Explorer


Theorem ss2iun

Description: Subclass theorem for indexed union. (Contributed by NM, 26-Nov-2003) (Proof shortened by Andrew Salmon, 25-Jul-2011)

Ref Expression
Assertion ss2iun ( ∀ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶 )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐵𝐶 → ( 𝑦𝐵𝑦𝐶 ) )
2 1 ralimi ( ∀ 𝑥𝐴 𝐵𝐶 → ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) )
3 rexim ( ∀ 𝑥𝐴 ( 𝑦𝐵𝑦𝐶 ) → ( ∃ 𝑥𝐴 𝑦𝐵 → ∃ 𝑥𝐴 𝑦𝐶 ) )
4 2 3 syl ( ∀ 𝑥𝐴 𝐵𝐶 → ( ∃ 𝑥𝐴 𝑦𝐵 → ∃ 𝑥𝐴 𝑦𝐶 ) )
5 eliun ( 𝑦 𝑥𝐴 𝐵 ↔ ∃ 𝑥𝐴 𝑦𝐵 )
6 eliun ( 𝑦 𝑥𝐴 𝐶 ↔ ∃ 𝑥𝐴 𝑦𝐶 )
7 4 5 6 3imtr4g ( ∀ 𝑥𝐴 𝐵𝐶 → ( 𝑦 𝑥𝐴 𝐵𝑦 𝑥𝐴 𝐶 ) )
8 7 ssrdv ( ∀ 𝑥𝐴 𝐵𝐶 𝑥𝐴 𝐵 𝑥𝐴 𝐶 )