Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
2 |
1
|
ral2imi |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 → ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) |
3 |
2
|
anim2d |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → ( ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) ) ) |
4 |
3
|
ss2abdv |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } ⊆ { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } ) |
5 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐵 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐵 ) } |
6 |
|
df-ixp |
⊢ X 𝑥 ∈ 𝐴 𝐶 = { 𝑓 ∣ ( 𝑓 Fn { 𝑥 ∣ 𝑥 ∈ 𝐴 } ∧ ∀ 𝑥 ∈ 𝐴 ( 𝑓 ‘ 𝑥 ) ∈ 𝐶 ) } |
7 |
4 5 6
|
3sstr4g |
⊢ ( ∀ 𝑥 ∈ 𝐴 𝐵 ⊆ 𝐶 → X 𝑥 ∈ 𝐴 𝐵 ⊆ X 𝑥 ∈ 𝐴 𝐶 ) |