Step |
Hyp |
Ref |
Expression |
1 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } |
2 |
|
df-rab |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜓 } = { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } |
3 |
1 2
|
sseq12i |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ) |
4 |
|
ss2ab |
⊢ ( { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) } ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
5 |
|
df-ral |
⊢ ( ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ) |
6 |
|
imdistan |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
7 |
6
|
albii |
⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) ↔ ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ) |
8 |
5 7
|
bitr2i |
⊢ ( ∀ 𝑥 ( ( 𝑥 ∈ 𝐴 ∧ 𝜑 ) → ( 𝑥 ∈ 𝐴 ∧ 𝜓 ) ) ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
9 |
3 4 8
|
3bitri |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |