Metamath Proof Explorer


Theorem ss2rab

Description: Restricted abstraction classes in a subclass relationship. (Contributed by NM, 30-May-1999)

Ref Expression
Assertion ss2rab ( { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 } ↔ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )

Proof

Step Hyp Ref Expression
1 df-rab { 𝑥𝐴𝜑 } = { 𝑥 ∣ ( 𝑥𝐴𝜑 ) }
2 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
3 1 2 sseq12i ( { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 } ↔ { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } )
4 ss2ab ( { 𝑥 ∣ ( 𝑥𝐴𝜑 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
5 df-ral ( ∀ 𝑥𝐴 ( 𝜑𝜓 ) ↔ ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) )
6 imdistan ( ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
7 6 albii ( ∀ 𝑥 ( 𝑥𝐴 → ( 𝜑𝜓 ) ) ↔ ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) )
8 5 7 bitr2i ( ∀ 𝑥 ( ( 𝑥𝐴𝜑 ) → ( 𝑥𝐴𝜓 ) ) ↔ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )
9 3 4 8 3bitri ( { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 } ↔ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )