Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ss2rabdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| Assertion | ss2rabdv | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ss2rabdv.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝜓 → 𝜒 ) ) | |
| 2 | 1 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) |
| 3 | ss2rab | ⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜓 → 𝜒 ) ) | |
| 4 | 2 3 | sylibr | ⊢ ( 𝜑 → { 𝑥 ∈ 𝐴 ∣ 𝜓 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜒 } ) |