Metamath Proof Explorer


Theorem ss2rabdv

Description: Deduction of restricted abstraction subclass from implication. (Contributed by NM, 30-May-2006) Avoid axioms. (Revised by TM, 1-Feb-2026)

Ref Expression
Hypothesis ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
Assertion ss2rabdv ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )

Proof

Step Hyp Ref Expression
1 ss2rabdv.1 ( ( 𝜑𝑥𝐴 ) → ( 𝜓𝜒 ) )
2 1 imdistanda ( 𝜑 → ( ( 𝑥𝐴𝜓 ) → ( 𝑥𝐴𝜒 ) ) )
3 2 ss2abdv ( 𝜑 → { 𝑥 ∣ ( 𝑥𝐴𝜓 ) } ⊆ { 𝑥 ∣ ( 𝑥𝐴𝜒 ) } )
4 df-rab { 𝑥𝐴𝜓 } = { 𝑥 ∣ ( 𝑥𝐴𝜓 ) }
5 df-rab { 𝑥𝐴𝜒 } = { 𝑥 ∣ ( 𝑥𝐴𝜒 ) }
6 3 4 5 3sstr4g ( 𝜑 → { 𝑥𝐴𝜓 } ⊆ { 𝑥𝐴𝜒 } )