Metamath Proof Explorer
Description: Inference of restricted abstraction subclass from implication.
(Contributed by NM, 14-Oct-1999)
|
|
Ref |
Expression |
|
Hypothesis |
ss2rabi.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
|
Assertion |
ss2rabi |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ss2rabi.1 |
⊢ ( 𝑥 ∈ 𝐴 → ( 𝜑 → 𝜓 ) ) |
2 |
|
ss2rab |
⊢ ( { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } ↔ ∀ 𝑥 ∈ 𝐴 ( 𝜑 → 𝜓 ) ) |
3 |
2 1
|
mprgbir |
⊢ { 𝑥 ∈ 𝐴 ∣ 𝜑 } ⊆ { 𝑥 ∈ 𝐴 ∣ 𝜓 } |