Metamath Proof Explorer


Theorem ss2rabi

Description: Inference of restricted abstraction subclass from implication. (Contributed by NM, 14-Oct-1999)

Ref Expression
Hypothesis ss2rabi.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
Assertion ss2rabi { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 }

Proof

Step Hyp Ref Expression
1 ss2rabi.1 ( 𝑥𝐴 → ( 𝜑𝜓 ) )
2 ss2rab ( { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 } ↔ ∀ 𝑥𝐴 ( 𝜑𝜓 ) )
3 2 1 mprgbir { 𝑥𝐴𝜑 } ⊆ { 𝑥𝐴𝜓 }