Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ss2ralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ) | |
| 2 | 1 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |
| 3 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) | |
| 4 | 2 3 | syld | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |