Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ss2ralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑦 ∈ 𝐴 𝜑 ) ) | |
2 | 1 | ralimdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |
3 | ssralv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐴 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) | |
4 | 2 3 | syld | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 𝜑 → ∀ 𝑥 ∈ 𝐴 ∀ 𝑦 ∈ 𝐴 𝜑 ) ) |