Metamath Proof Explorer


Theorem ss2ralv

Description: Two quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)

Ref Expression
Assertion ss2ralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵 𝜑 → ∀ 𝑥𝐴𝑦𝐴 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssralv ( 𝐴𝐵 → ( ∀ 𝑦𝐵 𝜑 → ∀ 𝑦𝐴 𝜑 ) )
2 1 ralimdv ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵 𝜑 → ∀ 𝑥𝐵𝑦𝐴 𝜑 ) )
3 ssralv ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐴 𝜑 → ∀ 𝑥𝐴𝑦𝐴 𝜑 ) )
4 2 3 syld ( 𝐴𝐵 → ( ∀ 𝑥𝐵𝑦𝐵 𝜑 → ∀ 𝑥𝐴𝑦𝐴 𝜑 ) )