Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)
Ref | Expression | ||
---|---|---|---|
Assertion | ss2rexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑦 ∈ 𝐴 𝜑 → ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
2 | 1 | reximdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |
3 | ssrexv | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐵 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) | |
4 | 2 3 | syld | ⊢ ( 𝐴 ⊆ 𝐵 → ( ∃ 𝑥 ∈ 𝐴 ∃ 𝑦 ∈ 𝐴 𝜑 → ∃ 𝑥 ∈ 𝐵 ∃ 𝑦 ∈ 𝐵 𝜑 ) ) |