Metamath Proof Explorer


Theorem ss2rexv

Description: Two existential quantifications restricted to a subclass. (Contributed by AV, 11-Mar-2023)

Ref Expression
Assertion ss2rexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴𝑦𝐴 𝜑 → ∃ 𝑥𝐵𝑦𝐵 𝜑 ) )

Proof

Step Hyp Ref Expression
1 ssrexv ( 𝐴𝐵 → ( ∃ 𝑦𝐴 𝜑 → ∃ 𝑦𝐵 𝜑 ) )
2 1 reximdv ( 𝐴𝐵 → ( ∃ 𝑥𝐴𝑦𝐴 𝜑 → ∃ 𝑥𝐴𝑦𝐵 𝜑 ) )
3 ssrexv ( 𝐴𝐵 → ( ∃ 𝑥𝐴𝑦𝐵 𝜑 → ∃ 𝑥𝐵𝑦𝐵 𝜑 ) )
4 2 3 syld ( 𝐴𝐵 → ( ∃ 𝑥𝐴𝑦𝐴 𝜑 → ∃ 𝑥𝐵𝑦𝐵 𝜑 ) )