Description: Deduction from a subclass relationship of binary relations. (Contributed by NM, 30-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssbrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
Assertion | ssbrd | ⊢ ( 𝜑 → ( 𝐶 𝐴 𝐷 → 𝐶 𝐵 𝐷 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssbrd.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | 1 | sseld | ⊢ ( 𝜑 → ( 〈 𝐶 , 𝐷 〉 ∈ 𝐴 → 〈 𝐶 , 𝐷 〉 ∈ 𝐵 ) ) |
3 | df-br | ⊢ ( 𝐶 𝐴 𝐷 ↔ 〈 𝐶 , 𝐷 〉 ∈ 𝐴 ) | |
4 | df-br | ⊢ ( 𝐶 𝐵 𝐷 ↔ 〈 𝐶 , 𝐷 〉 ∈ 𝐵 ) | |
5 | 2 3 4 | 3imtr4g | ⊢ ( 𝜑 → ( 𝐶 𝐴 𝐷 → 𝐶 𝐵 𝐷 ) ) |