| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simpl |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 ⊆cat 𝐵 ) |
| 2 |
|
eqidd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 = dom dom 𝐴 ) |
| 3 |
1 2
|
sscfn1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐵 ⊆cat 𝐴 ) |
| 5 |
|
eqidd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐵 = dom dom 𝐵 ) |
| 6 |
4 5
|
sscfn1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 7 |
3 6 1
|
ssc1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 8 |
6 3 4
|
ssc1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐵 ⊆ dom dom 𝐴 ) |
| 9 |
7 8
|
eqssd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → dom dom 𝐴 = dom dom 𝐵 ) |
| 10 |
9
|
sqxpeqd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 11 |
3
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
| 12 |
1
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 ⊆cat 𝐵 ) |
| 13 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐴 ) |
| 14 |
|
simprr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐴 ) |
| 15 |
11 12 13 14
|
ssc2 |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐵 𝑦 ) ) |
| 16 |
6
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
| 17 |
4
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 ⊆cat 𝐴 ) |
| 18 |
7
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
| 19 |
18 13
|
sseldd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐵 ) |
| 20 |
18 14
|
sseldd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐵 ) |
| 21 |
16 17 19 20
|
ssc2 |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐵 𝑦 ) ⊆ ( 𝑥 𝐴 𝑦 ) ) |
| 22 |
15 21
|
eqssd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) |
| 23 |
22
|
ralrimivva |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) |
| 24 |
|
eqfnov |
⊢ ( ( 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ∧ 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) → ( 𝐴 = 𝐵 ↔ ( ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) ) ) |
| 25 |
3 6 24
|
syl2anc |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → ( 𝐴 = 𝐵 ↔ ( ( dom dom 𝐴 × dom dom 𝐴 ) = ( dom dom 𝐵 × dom dom 𝐵 ) ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) = ( 𝑥 𝐵 𝑦 ) ) ) ) |
| 26 |
10 23 25
|
mpbir2and |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐴 ) → 𝐴 = 𝐵 ) |