Step |
Hyp |
Ref |
Expression |
1 |
|
sscfn1.1 |
⊢ ( 𝜑 → 𝐻 ⊆cat 𝐽 ) |
2 |
|
sscfn2.2 |
⊢ ( 𝜑 → 𝑇 = dom dom 𝐽 ) |
3 |
|
brssc |
⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝐽 Fn ( 𝑡 × 𝑡 ) ) |
6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝑇 = dom dom 𝐽 ) |
7 |
|
fndm |
⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom 𝐽 = ( 𝑡 × 𝑡 ) ) |
9 |
8
|
dmeqd |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom dom 𝐽 = dom ( 𝑡 × 𝑡 ) ) |
10 |
|
dmxpid |
⊢ dom ( 𝑡 × 𝑡 ) = 𝑡 |
11 |
9 10
|
eqtrdi |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → dom dom 𝐽 = 𝑡 ) |
12 |
6 11
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝑡 = 𝑇 ) |
13 |
12
|
sqxpeqd |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → ( 𝑡 × 𝑡 ) = ( 𝑇 × 𝑇 ) ) |
14 |
13
|
fneq2d |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → ( 𝐽 Fn ( 𝑡 × 𝑡 ) ↔ 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
15 |
5 14
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐽 Fn ( 𝑡 × 𝑡 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |
16 |
15
|
ex |
⊢ ( 𝜑 → ( 𝐽 Fn ( 𝑡 × 𝑡 ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
17 |
16
|
adantrd |
⊢ ( 𝜑 → ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
18 |
17
|
exlimdv |
⊢ ( 𝜑 → ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑦 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑦 × 𝑦 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → 𝐽 Fn ( 𝑇 × 𝑇 ) ) ) |
19 |
4 18
|
mpd |
⊢ ( 𝜑 → 𝐽 Fn ( 𝑇 × 𝑇 ) ) |