Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Assertion | sscid | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 ⊆cat 𝐻 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fnresdm | ⊢ ( 𝐻 Fn ( 𝑆 × 𝑆 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) | |
2 | 1 | adantr | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) |
3 | sscres | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 ) | |
4 | 2 3 | eqbrtrrd | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 ⊆cat 𝐻 ) |