Metamath Proof Explorer


Theorem sscid

Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Assertion sscid ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆𝑉 ) → 𝐻cat 𝐻 )

Proof

Step Hyp Ref Expression
1 fnresdm ( 𝐻 Fn ( 𝑆 × 𝑆 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 )
2 1 adantr ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 )
3 sscres ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 )
4 2 3 eqbrtrrd ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆𝑉 ) → 𝐻cat 𝐻 )