Description: The subcategory subset relation is reflexive. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscid | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 ⊆cat 𝐻 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fnresdm | ⊢ ( 𝐻 Fn ( 𝑆 × 𝑆 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) |
| 3 | sscres | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ⊆cat 𝐻 ) | |
| 4 | 2 3 | eqbrtrrd | ⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 ⊆cat 𝐻 ) |