Metamath Proof Explorer


Theorem ssclem

Description: Lemma for ssc1 and similar theorems. (Contributed by Mario Carneiro, 6-Jan-2017)

Ref Expression
Hypothesis isssc.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
Assertion ssclem ( 𝜑 → ( 𝐻 ∈ V ↔ 𝑆 ∈ V ) )

Proof

Step Hyp Ref Expression
1 isssc.1 ( 𝜑𝐻 Fn ( 𝑆 × 𝑆 ) )
2 dmxpid dom ( 𝑆 × 𝑆 ) = 𝑆
3 1 fndmd ( 𝜑 → dom 𝐻 = ( 𝑆 × 𝑆 ) )
4 3 adantr ( ( 𝜑𝐻 ∈ V ) → dom 𝐻 = ( 𝑆 × 𝑆 ) )
5 dmexg ( 𝐻 ∈ V → dom 𝐻 ∈ V )
6 5 adantl ( ( 𝜑𝐻 ∈ V ) → dom 𝐻 ∈ V )
7 4 6 eqeltrrd ( ( 𝜑𝐻 ∈ V ) → ( 𝑆 × 𝑆 ) ∈ V )
8 7 dmexd ( ( 𝜑𝐻 ∈ V ) → dom ( 𝑆 × 𝑆 ) ∈ V )
9 2 8 eqeltrrid ( ( 𝜑𝐻 ∈ V ) → 𝑆 ∈ V )
10 sqxpexg ( 𝑆 ∈ V → ( 𝑆 × 𝑆 ) ∈ V )
11 fnex ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( 𝑆 × 𝑆 ) ∈ V ) → 𝐻 ∈ V )
12 1 10 11 syl2an ( ( 𝜑𝑆 ∈ V ) → 𝐻 ∈ V )
13 9 12 impbida ( 𝜑 → ( 𝐻 ∈ V ↔ 𝑆 ∈ V ) )