Metamath Proof Explorer


Theorem sscls

Description: A subset of a topology's underlying set is included in its closure. (Contributed by NM, 22-Feb-2007)

Ref Expression
Hypothesis clscld.1 𝑋 = 𝐽
Assertion sscls ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 clscld.1 𝑋 = 𝐽
2 ssintub 𝑆 { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 }
3 1 clsval ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) = { 𝑥 ∈ ( Clsd ‘ 𝐽 ) ∣ 𝑆𝑥 } )
4 2 3 sseqtrrid ( ( 𝐽 ∈ Top ∧ 𝑆𝑋 ) → 𝑆 ⊆ ( ( cls ‘ 𝐽 ) ‘ 𝑆 ) )