| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sscmp.1 | ⊢ 𝑋  =  ∪  𝐾 | 
						
							| 2 |  | topontop | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝐽  ∈  Top ) | 
						
							| 3 | 2 | 3ad2ant1 | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  →  𝐽  ∈  Top ) | 
						
							| 4 |  | elpwi | ⊢ ( 𝑥  ∈  𝒫  𝐽  →  𝑥  ⊆  𝐽 ) | 
						
							| 5 |  | simpl2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝐾  ∈  Comp ) | 
						
							| 6 |  | simprl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝑥  ⊆  𝐽 ) | 
						
							| 7 |  | simpl3 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝐽  ⊆  𝐾 ) | 
						
							| 8 | 6 7 | sstrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝑥  ⊆  𝐾 ) | 
						
							| 9 |  | simpl1 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝐽  ∈  ( TopOn ‘ 𝑋 ) ) | 
						
							| 10 |  | toponuni | ⊢ ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 11 | 9 10 | syl | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝑋  =  ∪  𝐽 ) | 
						
							| 12 |  | simprr | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  ∪  𝐽  =  ∪  𝑥 ) | 
						
							| 13 | 11 12 | eqtrd | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  𝑋  =  ∪  𝑥 ) | 
						
							| 14 | 1 | cmpcov | ⊢ ( ( 𝐾  ∈  Comp  ∧  𝑥  ⊆  𝐾  ∧  𝑋  =  ∪  𝑥 )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 15 | 5 8 13 14 | syl3anc | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦 ) | 
						
							| 16 | 11 | eqeq1d | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  ( 𝑋  =  ∪  𝑦  ↔  ∪  𝐽  =  ∪  𝑦 ) ) | 
						
							| 17 | 16 | rexbidv | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  ( ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) 𝑋  =  ∪  𝑦  ↔  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) ) | 
						
							| 18 | 15 17 | mpbid | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  ( 𝑥  ⊆  𝐽  ∧  ∪  𝐽  =  ∪  𝑥 ) )  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) | 
						
							| 19 | 18 | expr | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ⊆  𝐽 )  →  ( ∪  𝐽  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) ) | 
						
							| 20 | 4 19 | sylan2 | ⊢ ( ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  ∧  𝑥  ∈  𝒫  𝐽 )  →  ( ∪  𝐽  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) ) | 
						
							| 21 | 20 | ralrimiva | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  →  ∀ 𝑥  ∈  𝒫  𝐽 ( ∪  𝐽  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) ) | 
						
							| 22 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 23 | 22 | iscmp | ⊢ ( 𝐽  ∈  Comp  ↔  ( 𝐽  ∈  Top  ∧  ∀ 𝑥  ∈  𝒫  𝐽 ( ∪  𝐽  =  ∪  𝑥  →  ∃ 𝑦  ∈  ( 𝒫  𝑥  ∩  Fin ) ∪  𝐽  =  ∪  𝑦 ) ) ) | 
						
							| 24 | 3 21 23 | sylanbrc | ⊢ ( ( 𝐽  ∈  ( TopOn ‘ 𝑋 )  ∧  𝐾  ∈  Comp  ∧  𝐽  ⊆  𝐾 )  →  𝐽  ∈  Comp ) |