Metamath Proof Explorer


Theorem sscntz

Description: A centralizer expression for two sets elementwise commuting. (Contributed by Stefan O'Rear, 5-Sep-2015)

Ref Expression
Hypotheses cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
cntzfval.p + = ( +g𝑀 )
cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
Assertion sscntz ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )

Proof

Step Hyp Ref Expression
1 cntzfval.b 𝐵 = ( Base ‘ 𝑀 )
2 cntzfval.p + = ( +g𝑀 )
3 cntzfval.z 𝑍 = ( Cntz ‘ 𝑀 )
4 1 2 3 cntzval ( 𝑇𝐵 → ( 𝑍𝑇 ) = { 𝑥𝐵 ∣ ∀ 𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } )
5 4 sseq2d ( 𝑇𝐵 → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ 𝑆 ⊆ { 𝑥𝐵 ∣ ∀ 𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) )
6 ssrab ( 𝑆 ⊆ { 𝑥𝐵 ∣ ∀ 𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ↔ ( 𝑆𝐵 ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
7 5 6 bitrdi ( 𝑇𝐵 → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ ( 𝑆𝐵 ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) )
8 ibar ( 𝑆𝐵 → ( ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑆𝐵 ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) )
9 8 bicomd ( 𝑆𝐵 → ( ( 𝑆𝐵 ∧ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ↔ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )
10 7 9 sylan9bbr ( ( 𝑆𝐵𝑇𝐵 ) → ( 𝑆 ⊆ ( 𝑍𝑇 ) ↔ ∀ 𝑥𝑆𝑦𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) )