Step |
Hyp |
Ref |
Expression |
1 |
|
cntzfval.b |
⊢ 𝐵 = ( Base ‘ 𝑀 ) |
2 |
|
cntzfval.p |
⊢ + = ( +g ‘ 𝑀 ) |
3 |
|
cntzfval.z |
⊢ 𝑍 = ( Cntz ‘ 𝑀 ) |
4 |
1 2 3
|
cntzval |
⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑍 ‘ 𝑇 ) = { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) |
5 |
4
|
sseq2d |
⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ 𝑆 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ) ) |
6 |
|
ssrab |
⊢ ( 𝑆 ⊆ { 𝑥 ∈ 𝐵 ∣ ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) } ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
7 |
5 6
|
bitrdi |
⊢ ( 𝑇 ⊆ 𝐵 → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) ) |
8 |
|
ibar |
⊢ ( 𝑆 ⊆ 𝐵 → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) ) |
9 |
8
|
bicomd |
⊢ ( 𝑆 ⊆ 𝐵 → ( ( 𝑆 ⊆ 𝐵 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |
10 |
7 9
|
sylan9bbr |
⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 𝑇 ⊆ 𝐵 ) → ( 𝑆 ⊆ ( 𝑍 ‘ 𝑇 ) ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑇 ( 𝑥 + 𝑦 ) = ( 𝑦 + 𝑥 ) ) ) |