| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cntzfval.b | ⊢ 𝐵  =  ( Base ‘ 𝑀 ) | 
						
							| 2 |  | cntzfval.p | ⊢  +   =  ( +g ‘ 𝑀 ) | 
						
							| 3 |  | cntzfval.z | ⊢ 𝑍  =  ( Cntz ‘ 𝑀 ) | 
						
							| 4 | 1 2 3 | cntzval | ⊢ ( 𝑇  ⊆  𝐵  →  ( 𝑍 ‘ 𝑇 )  =  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) } ) | 
						
							| 5 | 4 | sseq2d | ⊢ ( 𝑇  ⊆  𝐵  →  ( 𝑆  ⊆  ( 𝑍 ‘ 𝑇 )  ↔  𝑆  ⊆  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) } ) ) | 
						
							| 6 |  | ssrab | ⊢ ( 𝑆  ⊆  { 𝑥  ∈  𝐵  ∣  ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) }  ↔  ( 𝑆  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) ) | 
						
							| 7 | 5 6 | bitrdi | ⊢ ( 𝑇  ⊆  𝐵  →  ( 𝑆  ⊆  ( 𝑍 ‘ 𝑇 )  ↔  ( 𝑆  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) ) ) | 
						
							| 8 |  | ibar | ⊢ ( 𝑆  ⊆  𝐵  →  ( ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 )  ↔  ( 𝑆  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) ) ) | 
						
							| 9 | 8 | bicomd | ⊢ ( 𝑆  ⊆  𝐵  →  ( ( 𝑆  ⊆  𝐵  ∧  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) ) | 
						
							| 10 | 7 9 | sylan9bbr | ⊢ ( ( 𝑆  ⊆  𝐵  ∧  𝑇  ⊆  𝐵 )  →  ( 𝑆  ⊆  ( 𝑍 ‘ 𝑇 )  ↔  ∀ 𝑥  ∈  𝑆 ∀ 𝑦  ∈  𝑇 ( 𝑥  +  𝑦 )  =  ( 𝑦  +  𝑥 ) ) ) |