Description: Contraposition law for subsets. Exercise 15 of TakeutiZaring p. 22. (Contributed by NM, 22-Mar-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sscon | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 2 | 1 | con3d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ¬ 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 3 | 2 | anim2d | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 4 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 5 | eldif | ⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) | |
| 6 | 3 4 5 | 3imtr4g | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) |
| 7 | 6 | ssrdv | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∖ 𝐵 ) ⊆ ( 𝐶 ∖ 𝐴 ) ) |