Metamath Proof Explorer


Theorem sscon

Description: Contraposition law for subsets. Exercise 15 of TakeutiZaring p. 22. (Contributed by NM, 22-Mar-1998)

Ref Expression
Assertion sscon ( 𝐴𝐵 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 con3d ( 𝐴𝐵 → ( ¬ 𝑥𝐵 → ¬ 𝑥𝐴 ) )
3 2 anim2d ( 𝐴𝐵 → ( ( 𝑥𝐶 ∧ ¬ 𝑥𝐵 ) → ( 𝑥𝐶 ∧ ¬ 𝑥𝐴 ) ) )
4 eldif ( 𝑥 ∈ ( 𝐶𝐵 ) ↔ ( 𝑥𝐶 ∧ ¬ 𝑥𝐵 ) )
5 eldif ( 𝑥 ∈ ( 𝐶𝐴 ) ↔ ( 𝑥𝐶 ∧ ¬ 𝑥𝐴 ) )
6 3 4 5 3imtr4g ( 𝐴𝐵 → ( 𝑥 ∈ ( 𝐶𝐵 ) → 𝑥 ∈ ( 𝐶𝐴 ) ) )
7 6 ssrdv ( 𝐴𝐵 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )