| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sscon | ⊢ ( 𝐴  ⊆  𝐵  →  ( 𝐶  ∖  𝐵 )  ⊆  ( 𝐶  ∖  𝐴 ) ) | 
						
							| 2 |  | sscon | ⊢ ( ( 𝐶  ∖  𝐵 )  ⊆  ( 𝐶  ∖  𝐴 )  →  ( 𝐶  ∖  ( 𝐶  ∖  𝐴 ) )  ⊆  ( 𝐶  ∖  ( 𝐶  ∖  𝐵 ) ) ) | 
						
							| 3 |  | dfss4 | ⊢ ( 𝐴  ⊆  𝐶  ↔  ( 𝐶  ∖  ( 𝐶  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 4 | 3 | biimpi | ⊢ ( 𝐴  ⊆  𝐶  →  ( 𝐶  ∖  ( 𝐶  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 5 | 4 | adantr | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐶  ∖  ( 𝐶  ∖  𝐴 ) )  =  𝐴 ) | 
						
							| 6 |  | dfss4 | ⊢ ( 𝐵  ⊆  𝐶  ↔  ( 𝐶  ∖  ( 𝐶  ∖  𝐵 ) )  =  𝐵 ) | 
						
							| 7 | 6 | biimpi | ⊢ ( 𝐵  ⊆  𝐶  →  ( 𝐶  ∖  ( 𝐶  ∖  𝐵 ) )  =  𝐵 ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐶  ∖  ( 𝐶  ∖  𝐵 ) )  =  𝐵 ) | 
						
							| 9 | 5 8 | sseq12d | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝐶  ∖  ( 𝐶  ∖  𝐴 ) )  ⊆  ( 𝐶  ∖  ( 𝐶  ∖  𝐵 ) )  ↔  𝐴  ⊆  𝐵 ) ) | 
						
							| 10 | 2 9 | imbitrid | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( ( 𝐶  ∖  𝐵 )  ⊆  ( 𝐶  ∖  𝐴 )  →  𝐴  ⊆  𝐵 ) ) | 
						
							| 11 | 1 10 | impbid2 | ⊢ ( ( 𝐴  ⊆  𝐶  ∧  𝐵  ⊆  𝐶 )  →  ( 𝐴  ⊆  𝐵  ↔  ( 𝐶  ∖  𝐵 )  ⊆  ( 𝐶  ∖  𝐴 ) ) ) |