| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
| 2 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) |
| 3 |
|
pm5.1 |
⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
| 4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
| 5 |
|
con2b |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
| 6 |
5
|
a1i |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 7 |
4 6
|
anbi12d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
| 8 |
|
jcab |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 9 |
|
jcab |
⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 10 |
7 8 9
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
| 11 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
| 12 |
11
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
| 13 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
| 14 |
13
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
| 15 |
10 12 14
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 16 |
15
|
albidv |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
| 17 |
|
df-ss |
⊢ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) |
| 18 |
|
df-ss |
⊢ ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) |
| 19 |
16 17 18
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |