Step |
Hyp |
Ref |
Expression |
1 |
|
ssel |
⊢ ( 𝐴 ⊆ 𝐶 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ) |
2 |
|
ssel |
⊢ ( 𝐵 ⊆ 𝐶 → ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) |
3 |
|
pm5.1 |
⊢ ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
4 |
1 2 3
|
syl2an |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ) ) |
5 |
|
con2b |
⊢ ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) |
6 |
5
|
a1i |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ↔ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
7 |
4 6
|
anbi12d |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
8 |
|
jcab |
⊢ ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐴 → ¬ 𝑥 ∈ 𝐵 ) ) ) |
9 |
|
jcab |
⊢ ( ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ↔ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ 𝐶 ) ∧ ( 𝑥 ∈ 𝐵 → ¬ 𝑥 ∈ 𝐴 ) ) ) |
10 |
7 8 9
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) ) |
11 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) |
12 |
11
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐴 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐵 ) ) ) |
13 |
|
eldif |
⊢ ( 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ↔ ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) |
14 |
13
|
imbi2i |
⊢ ( ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ↔ ( 𝑥 ∈ 𝐵 → ( 𝑥 ∈ 𝐶 ∧ ¬ 𝑥 ∈ 𝐴 ) ) ) |
15 |
10 12 14
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
16 |
15
|
albidv |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) ) |
17 |
|
dfss2 |
⊢ ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ( 𝐶 ∖ 𝐵 ) ) ) |
18 |
|
dfss2 |
⊢ ( 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐵 → 𝑥 ∈ ( 𝐶 ∖ 𝐴 ) ) ) |
19 |
16 17 18
|
3bitr4g |
⊢ ( ( 𝐴 ⊆ 𝐶 ∧ 𝐵 ⊆ 𝐶 ) → ( 𝐴 ⊆ ( 𝐶 ∖ 𝐵 ) ↔ 𝐵 ⊆ ( 𝐶 ∖ 𝐴 ) ) ) |