Metamath Proof Explorer


Theorem sscond

Description: If A is contained in B , then ( C \ B ) is contained in ( C \ A ) . Deduction form of sscon . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis ssdifd.1 ( 𝜑𝐴𝐵 )
Assertion sscond ( 𝜑 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 ssdifd.1 ( 𝜑𝐴𝐵 )
2 sscon ( 𝐴𝐵 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )
3 1 2 syl ( 𝜑 → ( 𝐶𝐵 ) ⊆ ( 𝐶𝐴 ) )