| Step |
Hyp |
Ref |
Expression |
| 1 |
|
inss1 |
⊢ ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 |
| 2 |
|
simpl |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ) |
| 3 |
2
|
elin2d |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑥 ∈ 𝑇 ) |
| 4 |
|
simpr |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) |
| 5 |
4
|
elin2d |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → 𝑦 ∈ 𝑇 ) |
| 6 |
3 5
|
ovresd |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 7 |
|
eqimss |
⊢ ( ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 8 |
6 7
|
syl |
⊢ ( ( 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∧ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ) → ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 9 |
8
|
rgen2 |
⊢ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) |
| 10 |
1 9
|
pm3.2i |
⊢ ( ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) |
| 11 |
|
simpl |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝐻 Fn ( 𝑆 × 𝑆 ) ) |
| 12 |
|
inss1 |
⊢ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ⊆ ( 𝑆 × 𝑆 ) |
| 13 |
|
fnssres |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ⊆ ( 𝑆 × 𝑆 ) ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) |
| 14 |
11 12 13
|
sylancl |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) |
| 15 |
|
resres |
⊢ ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ↾ ( 𝑇 × 𝑇 ) ) = ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) |
| 16 |
|
fnresdm |
⊢ ( 𝐻 Fn ( 𝑆 × 𝑆 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) = 𝐻 ) |
| 18 |
17
|
reseq1d |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( 𝑆 × 𝑆 ) ) ↾ ( 𝑇 × 𝑇 ) ) = ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ) |
| 19 |
15 18
|
eqtr3id |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) = ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ) |
| 20 |
|
inxp |
⊢ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) = ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) |
| 21 |
20
|
a1i |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) = ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) |
| 22 |
19 21
|
fneq12d |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ) Fn ( ( 𝑆 × 𝑆 ) ∩ ( 𝑇 × 𝑇 ) ) ↔ ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) Fn ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) ) |
| 23 |
14 22
|
mpbid |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) Fn ( ( 𝑆 ∩ 𝑇 ) × ( 𝑆 ∩ 𝑇 ) ) ) |
| 24 |
|
simpr |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → 𝑆 ∈ 𝑉 ) |
| 25 |
23 11 24
|
isssc |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ⊆cat 𝐻 ↔ ( ( 𝑆 ∩ 𝑇 ) ⊆ 𝑆 ∧ ∀ 𝑥 ∈ ( 𝑆 ∩ 𝑇 ) ∀ 𝑦 ∈ ( 𝑆 ∩ 𝑇 ) ( 𝑥 ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) 𝑦 ) ⊆ ( 𝑥 𝐻 𝑦 ) ) ) ) |
| 26 |
10 25
|
mpbiri |
⊢ ( ( 𝐻 Fn ( 𝑆 × 𝑆 ) ∧ 𝑆 ∈ 𝑉 ) → ( 𝐻 ↾ ( 𝑇 × 𝑇 ) ) ⊆cat 𝐻 ) |