Metamath Proof Explorer


Theorem ssct

Description: Any subset of a countable set is countable. (Contributed by Thierry Arnoux, 31-Jan-2017)

Ref Expression
Assertion ssct ( ( 𝐴𝐵𝐵 ≼ ω ) → 𝐴 ≼ ω )

Proof

Step Hyp Ref Expression
1 ctex ( 𝐵 ≼ ω → 𝐵 ∈ V )
2 ssdomg ( 𝐵 ∈ V → ( 𝐴𝐵𝐴𝐵 ) )
3 1 2 syl ( 𝐵 ≼ ω → ( 𝐴𝐵𝐴𝐵 ) )
4 3 impcom ( ( 𝐴𝐵𝐵 ≼ ω ) → 𝐴𝐵 )
5 domtr ( ( 𝐴𝐵𝐵 ≼ ω ) → 𝐴 ≼ ω )
6 4 5 sylancom ( ( 𝐴𝐵𝐵 ≼ ω ) → 𝐴 ≼ ω )