Step |
Hyp |
Ref |
Expression |
1 |
|
simpl |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 ⊆cat 𝐵 ) |
2 |
|
eqidd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 = dom dom 𝐴 ) |
3 |
1 2
|
sscfn1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
4 |
|
eqidd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐵 = dom dom 𝐵 ) |
5 |
1 4
|
sscfn2 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
6 |
3 5 1
|
ssc1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
7 |
|
simpr |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐵 ⊆cat 𝐶 ) |
8 |
|
eqidd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐶 = dom dom 𝐶 ) |
9 |
7 8
|
sscfn2 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐶 Fn ( dom dom 𝐶 × dom dom 𝐶 ) ) |
10 |
5 9 7
|
ssc1 |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐵 ⊆ dom dom 𝐶 ) |
11 |
6 10
|
sstrd |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐴 ⊆ dom dom 𝐶 ) |
12 |
3
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 Fn ( dom dom 𝐴 × dom dom 𝐴 ) ) |
13 |
1
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐴 ⊆cat 𝐵 ) |
14 |
|
simprl |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐴 ) |
15 |
|
simprr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐴 ) |
16 |
12 13 14 15
|
ssc2 |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐵 𝑦 ) ) |
17 |
5
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 Fn ( dom dom 𝐵 × dom dom 𝐵 ) ) |
18 |
7
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝐵 ⊆cat 𝐶 ) |
19 |
6
|
adantr |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → dom dom 𝐴 ⊆ dom dom 𝐵 ) |
20 |
19 14
|
sseldd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑥 ∈ dom dom 𝐵 ) |
21 |
19 15
|
sseldd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → 𝑦 ∈ dom dom 𝐵 ) |
22 |
17 18 20 21
|
ssc2 |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐵 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
23 |
16 22
|
sstrd |
⊢ ( ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) ∧ ( 𝑥 ∈ dom dom 𝐴 ∧ 𝑦 ∈ dom dom 𝐴 ) ) → ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
24 |
23
|
ralrimivva |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) |
25 |
|
sscrel |
⊢ Rel ⊆cat |
26 |
25
|
brrelex2i |
⊢ ( 𝐵 ⊆cat 𝐶 → 𝐶 ∈ V ) |
27 |
26
|
adantl |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐶 ∈ V ) |
28 |
|
dmexg |
⊢ ( 𝐶 ∈ V → dom 𝐶 ∈ V ) |
29 |
|
dmexg |
⊢ ( dom 𝐶 ∈ V → dom dom 𝐶 ∈ V ) |
30 |
27 28 29
|
3syl |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → dom dom 𝐶 ∈ V ) |
31 |
3 9 30
|
isssc |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → ( 𝐴 ⊆cat 𝐶 ↔ ( dom dom 𝐴 ⊆ dom dom 𝐶 ∧ ∀ 𝑥 ∈ dom dom 𝐴 ∀ 𝑦 ∈ dom dom 𝐴 ( 𝑥 𝐴 𝑦 ) ⊆ ( 𝑥 𝐶 𝑦 ) ) ) ) |
32 |
11 24 31
|
mpbir2and |
⊢ ( ( 𝐴 ⊆cat 𝐵 ∧ 𝐵 ⊆cat 𝐶 ) → 𝐴 ⊆cat 𝐶 ) |