Metamath Proof Explorer


Theorem ssd

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypothesis ssd.1 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
Assertion ssd ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssd.1 ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
2 nfv 𝑥 𝜑
3 2 1 ssdf ( 𝜑𝐴𝐵 )