Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 3-Jan-2021)
Ref | Expression | ||
---|---|---|---|
Hypothesis | ssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
Assertion | ssd | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssd.1 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) | |
2 | nfv | ⊢ Ⅎ 𝑥 𝜑 | |
3 | 2 1 | ssdf | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |