Metamath Proof Explorer


Theorem ssdf2

Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)

Ref Expression
Hypotheses ssdf2.p 𝑥 𝜑
ssdf2.a 𝑥 𝐴
ssdf2.b 𝑥 𝐵
ssdf2.x ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
Assertion ssdf2 ( 𝜑𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 ssdf2.p 𝑥 𝜑
2 ssdf2.a 𝑥 𝐴
3 ssdf2.b 𝑥 𝐵
4 ssdf2.x ( ( 𝜑𝑥𝐴 ) → 𝑥𝐵 )
5 4 ex ( 𝜑 → ( 𝑥𝐴𝑥𝐵 ) )
6 1 2 3 5 ssrd ( 𝜑𝐴𝐵 )