Metamath Proof Explorer
Description: A sufficient condition for a subclass relationship. (Contributed by Glauco Siliprandi, 2-Jan-2022)
|
|
Ref |
Expression |
|
Hypotheses |
ssdf2.p |
⊢ Ⅎ 𝑥 𝜑 |
|
|
ssdf2.a |
⊢ Ⅎ 𝑥 𝐴 |
|
|
ssdf2.b |
⊢ Ⅎ 𝑥 𝐵 |
|
|
ssdf2.x |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
|
Assertion |
ssdf2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
ssdf2.p |
⊢ Ⅎ 𝑥 𝜑 |
2 |
|
ssdf2.a |
⊢ Ⅎ 𝑥 𝐴 |
3 |
|
ssdf2.b |
⊢ Ⅎ 𝑥 𝐵 |
4 |
|
ssdf2.x |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ 𝐵 ) |
5 |
4
|
ex |
⊢ ( 𝜑 → ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) |
6 |
1 2 3 5
|
ssrd |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |