Metamath Proof Explorer


Theorem ssdif

Description: Difference law for subsets. (Contributed by NM, 28-May-1998)

Ref Expression
Assertion ssdif ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssel ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
2 1 anim1d ( 𝐴𝐵 → ( ( 𝑥𝐴 ∧ ¬ 𝑥𝐶 ) → ( 𝑥𝐵 ∧ ¬ 𝑥𝐶 ) ) )
3 eldif ( 𝑥 ∈ ( 𝐴𝐶 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐶 ) )
4 eldif ( 𝑥 ∈ ( 𝐵𝐶 ) ↔ ( 𝑥𝐵 ∧ ¬ 𝑥𝐶 ) )
5 2 3 4 3imtr4g ( 𝐴𝐵 → ( 𝑥 ∈ ( 𝐴𝐶 ) → 𝑥 ∈ ( 𝐵𝐶 ) ) )
6 5 ssrdv ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )