Description: Subclass expressed in terms of difference. Exercise 7 of TakeutiZaring p. 22. (Contributed by NM, 29-Apr-1994)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdif0 | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iman | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ¬ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 2 | eldif | ⊢ ( 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ↔ ( 𝑥 ∈ 𝐴 ∧ ¬ 𝑥 ∈ 𝐵 ) ) | |
| 3 | 1 2 | xchbinxr | ⊢ ( ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 4 | 3 | albii | ⊢ ( ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) |
| 5 | df-ss | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ∀ 𝑥 ( 𝑥 ∈ 𝐴 → 𝑥 ∈ 𝐵 ) ) | |
| 6 | eq0 | ⊢ ( ( 𝐴 ∖ 𝐵 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴 ∖ 𝐵 ) ) | |
| 7 | 4 5 6 | 3bitr4i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ ( 𝐴 ∖ 𝐵 ) = ∅ ) |