Metamath Proof Explorer


Theorem ssdif0

Description: Subclass expressed in terms of difference. Exercise 7 of TakeutiZaring p. 22. (Contributed by NM, 29-Apr-1994)

Ref Expression
Assertion ssdif0 ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = ∅ )

Proof

Step Hyp Ref Expression
1 iman ( ( 𝑥𝐴𝑥𝐵 ) ↔ ¬ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
2 eldif ( 𝑥 ∈ ( 𝐴𝐵 ) ↔ ( 𝑥𝐴 ∧ ¬ 𝑥𝐵 ) )
3 1 2 xchbinxr ( ( 𝑥𝐴𝑥𝐵 ) ↔ ¬ 𝑥 ∈ ( 𝐴𝐵 ) )
4 3 albii ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴𝐵 ) )
5 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
6 eq0 ( ( 𝐴𝐵 ) = ∅ ↔ ∀ 𝑥 ¬ 𝑥 ∈ ( 𝐴𝐵 ) )
7 4 5 6 3bitr4i ( 𝐴𝐵 ↔ ( 𝐴𝐵 ) = ∅ )