Metamath Proof Explorer


Theorem ssdifd

Description: If A is contained in B , then ( A \ C ) is contained in ( B \ C ) . Deduction form of ssdif . (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypothesis ssdifd.1 ( 𝜑𝐴𝐵 )
Assertion ssdifd ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )

Proof

Step Hyp Ref Expression
1 ssdifd.1 ( 𝜑𝐴𝐵 )
2 ssdif ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
3 1 2 syl ( 𝜑 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )