Description: A class is a subclass of itself subtracted from another iff it is the empty set. (Contributed by Steve Rodriguez, 20-Nov-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifeq0 | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 = ∅ ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | inidm | ⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 | |
2 | ssdifin0 | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) → ( 𝐴 ∩ 𝐴 ) = ∅ ) | |
3 | 1 2 | eqtr3id | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) → 𝐴 = ∅ ) |
4 | 0ss | ⊢ ∅ ⊆ ( 𝐵 ∖ ∅ ) | |
5 | id | ⊢ ( 𝐴 = ∅ → 𝐴 = ∅ ) | |
6 | difeq2 | ⊢ ( 𝐴 = ∅ → ( 𝐵 ∖ 𝐴 ) = ( 𝐵 ∖ ∅ ) ) | |
7 | 5 6 | sseq12d | ⊢ ( 𝐴 = ∅ → ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ ∅ ⊆ ( 𝐵 ∖ ∅ ) ) ) |
8 | 4 7 | mpbiri | ⊢ ( 𝐴 = ∅ → 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ) |
9 | 3 8 | impbii | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ 𝐴 ) ↔ 𝐴 = ∅ ) |