Metamath Proof Explorer


Theorem ssdifim

Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022)

Ref Expression
Assertion ssdifim ( ( 𝐴𝑉𝐵 = ( 𝑉𝐴 ) ) → 𝐴 = ( 𝑉𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss4 ( 𝐴𝑉 ↔ ( 𝑉 ∖ ( 𝑉𝐴 ) ) = 𝐴 )
2 eqcom ( ( 𝑉 ∖ ( 𝑉𝐴 ) ) = 𝐴𝐴 = ( 𝑉 ∖ ( 𝑉𝐴 ) ) )
3 1 2 sylbb ( 𝐴𝑉𝐴 = ( 𝑉 ∖ ( 𝑉𝐴 ) ) )
4 difeq2 ( 𝐵 = ( 𝑉𝐴 ) → ( 𝑉𝐵 ) = ( 𝑉 ∖ ( 𝑉𝐴 ) ) )
5 4 eqcomd ( 𝐵 = ( 𝑉𝐴 ) → ( 𝑉 ∖ ( 𝑉𝐴 ) ) = ( 𝑉𝐵 ) )
6 3 5 sylan9eq ( ( 𝐴𝑉𝐵 = ( 𝑉𝐴 ) ) → 𝐴 = ( 𝑉𝐵 ) )