Description: Implication of a class difference with a subclass. (Contributed by AV, 3-Jan-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifim | ⊢ ( ( 𝐴 ⊆ 𝑉 ∧ 𝐵 = ( 𝑉 ∖ 𝐴 ) ) → 𝐴 = ( 𝑉 ∖ 𝐵 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfss4 | ⊢ ( 𝐴 ⊆ 𝑉 ↔ ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = 𝐴 ) | |
2 | eqcom | ⊢ ( ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = 𝐴 ↔ 𝐴 = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) | |
3 | 1 2 | sylbb | ⊢ ( 𝐴 ⊆ 𝑉 → 𝐴 = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) |
4 | difeq2 | ⊢ ( 𝐵 = ( 𝑉 ∖ 𝐴 ) → ( 𝑉 ∖ 𝐵 ) = ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) ) | |
5 | 4 | eqcomd | ⊢ ( 𝐵 = ( 𝑉 ∖ 𝐴 ) → ( 𝑉 ∖ ( 𝑉 ∖ 𝐴 ) ) = ( 𝑉 ∖ 𝐵 ) ) |
6 | 3 5 | sylan9eq | ⊢ ( ( 𝐴 ⊆ 𝑉 ∧ 𝐵 = ( 𝑉 ∖ 𝐴 ) ) → 𝐴 = ( 𝑉 ∖ 𝐵 ) ) |