Metamath Proof Explorer


Theorem ssdifin0

Description: A subset of a difference does not intersect the subtrahend. (Contributed by Jeff Hankins, 1-Sep-2013) (Proof shortened by Mario Carneiro, 24-Aug-2015)

Ref Expression
Assertion ssdifin0 ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐶 ) ⊆ ( ( 𝐵𝐶 ) ∩ 𝐶 ) )
2 disjdifr ( ( 𝐵𝐶 ) ∩ 𝐶 ) = ∅
3 sseq0 ( ( ( 𝐴𝐶 ) ⊆ ( ( 𝐵𝐶 ) ∩ 𝐶 ) ∧ ( ( 𝐵𝐶 ) ∩ 𝐶 ) = ∅ ) → ( 𝐴𝐶 ) = ∅ )
4 1 2 3 sylancl ( 𝐴 ⊆ ( 𝐵𝐶 ) → ( 𝐴𝐶 ) = ∅ )