Metamath Proof Explorer


Theorem ssdifsn

Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021) (Proof shortened by JJ, 31-May-2022)

Ref Expression
Assertion ssdifsn ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐶𝐴 ) )

Proof

Step Hyp Ref Expression
1 difss2 ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) → 𝐴𝐵 )
2 reldisj ( 𝐴𝐵 → ( ( 𝐴 ∩ { 𝐶 } ) = ∅ ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ) )
3 2 bicomd ( 𝐴𝐵 → ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) )
4 1 3 biadanii ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵 ∧ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) )
5 disjsn ( ( 𝐴 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶𝐴 )
6 5 anbi2i ( ( 𝐴𝐵 ∧ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐶𝐴 ) )
7 4 6 bitri ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴𝐵 ∧ ¬ 𝐶𝐴 ) )