Description: Subset of a set with an element removed. (Contributed by Emmett Weisz, 7-Jul-2021) (Proof shortened by JJ, 31-May-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | ssdifsn | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | difss2 | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) → 𝐴 ⊆ 𝐵 ) | |
2 | reldisj | ⊢ ( 𝐴 ⊆ 𝐵 → ( ( 𝐴 ∩ { 𝐶 } ) = ∅ ↔ 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ) ) | |
3 | 2 | bicomd | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) ) |
4 | 1 3 | biadanii | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) ) |
5 | disjsn | ⊢ ( ( 𝐴 ∩ { 𝐶 } ) = ∅ ↔ ¬ 𝐶 ∈ 𝐴 ) | |
6 | 5 | anbi2i | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐴 ∩ { 𝐶 } ) = ∅ ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) ) |
7 | 4 6 | bitri | ⊢ ( 𝐴 ⊆ ( 𝐵 ∖ { 𝐶 } ) ↔ ( 𝐴 ⊆ 𝐵 ∧ ¬ 𝐶 ∈ 𝐴 ) ) |