Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007) (Proof shortened by JJ, 14-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssdisj | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssrin | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐴 ∩ 𝐶 ) ⊆ ( 𝐵 ∩ 𝐶 ) ) | |
| 2 | eqimss | ⊢ ( ( 𝐵 ∩ 𝐶 ) = ∅ → ( 𝐵 ∩ 𝐶 ) ⊆ ∅ ) | |
| 3 | 1 2 | sylan9ss | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( 𝐴 ∩ 𝐶 ) ⊆ ∅ ) |
| 4 | ss0 | ⊢ ( ( 𝐴 ∩ 𝐶 ) ⊆ ∅ → ( 𝐴 ∩ 𝐶 ) = ∅ ) | |
| 5 | 3 4 | syl | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ ( 𝐵 ∩ 𝐶 ) = ∅ ) → ( 𝐴 ∩ 𝐶 ) = ∅ ) |