Metamath Proof Explorer


Theorem ssdisj

Description: Intersection with a subclass of a disjoint class. (Contributed by FL, 24-Jan-2007) (Proof shortened by JJ, 14-Jul-2021)

Ref Expression
Assertion ssdisj ( ( 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐴𝐶 ) = ∅ )

Proof

Step Hyp Ref Expression
1 ssrin ( 𝐴𝐵 → ( 𝐴𝐶 ) ⊆ ( 𝐵𝐶 ) )
2 eqimss ( ( 𝐵𝐶 ) = ∅ → ( 𝐵𝐶 ) ⊆ ∅ )
3 1 2 sylan9ss ( ( 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐴𝐶 ) ⊆ ∅ )
4 ss0 ( ( 𝐴𝐶 ) ⊆ ∅ → ( 𝐴𝐶 ) = ∅ )
5 3 4 syl ( ( 𝐴𝐵 ∧ ( 𝐵𝐶 ) = ∅ ) → ( 𝐴𝐶 ) = ∅ )