Metamath Proof Explorer


Theorem ssdmd1

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd1 ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀* 𝐵 )

Proof

Step Hyp Ref Expression
1 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
2 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
3 ssmd2 ( ( ( ⊥ ‘ 𝐵 ) ∈ C ∧ ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) )
4 3 3expia ( ( ( ⊥ ‘ 𝐵 ) ∈ C ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
5 1 2 4 syl2anr ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
6 chsscon3 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
7 dmdmd ( ( 𝐴C𝐵C ) → ( 𝐴 𝑀* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀 ( ⊥ ‘ 𝐵 ) ) )
8 5 6 7 3imtr4d ( ( 𝐴C𝐵C ) → ( 𝐴𝐵𝐴 𝑀* 𝐵 ) )
9 8 3impia ( ( 𝐴C𝐵C𝐴𝐵 ) → 𝐴 𝑀* 𝐵 )