Step |
Hyp |
Ref |
Expression |
1 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
2 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
3 |
|
ssmd2 |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) |
4 |
3
|
3expia |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
5 |
1 2 4
|
syl2anr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
6 |
|
chsscon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
7 |
|
dmdmd |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 𝑀ℋ* 𝐵 ↔ ( ⊥ ‘ 𝐴 ) 𝑀ℋ ( ⊥ ‘ 𝐵 ) ) ) |
8 |
5 6 7
|
3imtr4d |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → 𝐴 𝑀ℋ* 𝐵 ) ) |
9 |
8
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → 𝐴 𝑀ℋ* 𝐵 ) |