Step |
Hyp |
Ref |
Expression |
1 |
|
chsscon3 |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
2 |
|
choccl |
⊢ ( 𝐵 ∈ Cℋ → ( ⊥ ‘ 𝐵 ) ∈ Cℋ ) |
3 |
|
choccl |
⊢ ( 𝐴 ∈ Cℋ → ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) |
4 |
|
ssmd1 |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) |
5 |
4
|
3expia |
⊢ ( ( ( ⊥ ‘ 𝐵 ) ∈ Cℋ ∧ ( ⊥ ‘ 𝐴 ) ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
6 |
2 3 5
|
syl2anr |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
7 |
1 6
|
sylbid |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ) → ( 𝐴 ⊆ 𝐵 → ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) ) |
8 |
7
|
3impia |
⊢ ( ( 𝐴 ∈ Cℋ ∧ 𝐵 ∈ Cℋ ∧ 𝐴 ⊆ 𝐵 ) → ( ⊥ ‘ 𝐵 ) 𝑀ℋ ( ⊥ ‘ 𝐴 ) ) |