Metamath Proof Explorer


Theorem ssdmd2

Description: Ordering implies the dual modular pair property. Remark in MaedaMaeda p. 1. (Contributed by NM, 22-Jun-2004) (New usage is discouraged.)

Ref Expression
Assertion ssdmd2 ( ( 𝐴C𝐵C𝐴𝐵 ) → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) )

Proof

Step Hyp Ref Expression
1 chsscon3 ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 ↔ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) )
2 choccl ( 𝐵C → ( ⊥ ‘ 𝐵 ) ∈ C )
3 choccl ( 𝐴C → ( ⊥ ‘ 𝐴 ) ∈ C )
4 ssmd1 ( ( ( ⊥ ‘ 𝐵 ) ∈ C ∧ ( ⊥ ‘ 𝐴 ) ∈ C ∧ ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) ) → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) )
5 4 3expia ( ( ( ⊥ ‘ 𝐵 ) ∈ C ∧ ( ⊥ ‘ 𝐴 ) ∈ C ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
6 2 3 5 syl2anr ( ( 𝐴C𝐵C ) → ( ( ⊥ ‘ 𝐵 ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
7 1 6 sylbid ( ( 𝐴C𝐵C ) → ( 𝐴𝐵 → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) ) )
8 7 3impia ( ( 𝐴C𝐵C𝐴𝐵 ) → ( ⊥ ‘ 𝐵 ) 𝑀 ( ⊥ ‘ 𝐴 ) )