Metamath Proof Explorer


Theorem ssdmres

Description: A domain restricted to a subclass equals the subclass. (Contributed by NM, 2-Mar-1997)

Ref Expression
Assertion ssdmres ( 𝐴 ⊆ dom 𝐵 ↔ dom ( 𝐵𝐴 ) = 𝐴 )

Proof

Step Hyp Ref Expression
1 df-ss ( 𝐴 ⊆ dom 𝐵 ↔ ( 𝐴 ∩ dom 𝐵 ) = 𝐴 )
2 dmres dom ( 𝐵𝐴 ) = ( 𝐴 ∩ dom 𝐵 )
3 2 eqeq1i ( dom ( 𝐵𝐴 ) = 𝐴 ↔ ( 𝐴 ∩ dom 𝐵 ) = 𝐴 )
4 1 3 bitr4i ( 𝐴 ⊆ dom 𝐵 ↔ dom ( 𝐵𝐴 ) = 𝐴 )