| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
| 2 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
| 3 |
|
f1oi |
⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 |
| 4 |
|
dff1o3 |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ↔ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) |
| 5 |
3 4
|
mpbi |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) |
| 6 |
5
|
simpli |
⊢ ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 |
| 7 |
|
fof |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) |
| 8 |
6 7
|
ax-mp |
⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 |
| 9 |
|
fss |
⊢ ( ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 10 |
8 9
|
mpan |
⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
| 11 |
|
funi |
⊢ Fun I |
| 12 |
|
cnvi |
⊢ ◡ I = I |
| 13 |
12
|
funeqi |
⊢ ( Fun ◡ I ↔ Fun I ) |
| 14 |
11 13
|
mpbir |
⊢ Fun ◡ I |
| 15 |
|
funres11 |
⊢ ( Fun ◡ I → Fun ◡ ( I ↾ 𝐴 ) ) |
| 16 |
14 15
|
ax-mp |
⊢ Fun ◡ ( I ↾ 𝐴 ) |
| 17 |
|
df-f1 |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ↔ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) |
| 18 |
10 16 17
|
sylanblrc |
⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
| 20 |
|
f1dom2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
| 21 |
1 2 19 20
|
syl3anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ≼ 𝐵 ) |
| 22 |
21
|
expcom |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |