Metamath Proof Explorer


Theorem ssdomg

Description: A set dominates its subsets. Theorem 16 of Suppes p. 94. (Contributed by NM, 19-Jun-1998) (Revised by Mario Carneiro, 24-Jun-2015)

Ref Expression
Assertion ssdomg ( 𝐵𝑉 → ( 𝐴𝐵𝐴𝐵 ) )

Proof

Step Hyp Ref Expression
1 ssexg ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴 ∈ V )
2 simpr ( ( 𝐴𝐵𝐵𝑉 ) → 𝐵𝑉 )
3 f1oi ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴
4 dff1o3 ( ( I ↾ 𝐴 ) : 𝐴1-1-onto𝐴 ↔ ( ( I ↾ 𝐴 ) : 𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴 ) ) )
5 3 4 mpbi ( ( I ↾ 𝐴 ) : 𝐴onto𝐴 ∧ Fun ( I ↾ 𝐴 ) )
6 5 simpli ( I ↾ 𝐴 ) : 𝐴onto𝐴
7 fof ( ( I ↾ 𝐴 ) : 𝐴onto𝐴 → ( I ↾ 𝐴 ) : 𝐴𝐴 )
8 6 7 ax-mp ( I ↾ 𝐴 ) : 𝐴𝐴
9 fss ( ( ( I ↾ 𝐴 ) : 𝐴𝐴𝐴𝐵 ) → ( I ↾ 𝐴 ) : 𝐴𝐵 )
10 8 9 mpan ( 𝐴𝐵 → ( I ↾ 𝐴 ) : 𝐴𝐵 )
11 funi Fun I
12 cnvi I = I
13 12 funeqi ( Fun I ↔ Fun I )
14 11 13 mpbir Fun I
15 funres11 ( Fun I → Fun ( I ↾ 𝐴 ) )
16 14 15 ax-mp Fun ( I ↾ 𝐴 )
17 df-f1 ( ( I ↾ 𝐴 ) : 𝐴1-1𝐵 ↔ ( ( I ↾ 𝐴 ) : 𝐴𝐵 ∧ Fun ( I ↾ 𝐴 ) ) )
18 10 16 17 sylanblrc ( 𝐴𝐵 → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
19 18 adantr ( ( 𝐴𝐵𝐵𝑉 ) → ( I ↾ 𝐴 ) : 𝐴1-1𝐵 )
20 f1dom2g ( ( 𝐴 ∈ V ∧ 𝐵𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴1-1𝐵 ) → 𝐴𝐵 )
21 1 2 19 20 syl3anc ( ( 𝐴𝐵𝐵𝑉 ) → 𝐴𝐵 )
22 21 expcom ( 𝐵𝑉 → ( 𝐴𝐵𝐴𝐵 ) )