Step |
Hyp |
Ref |
Expression |
1 |
|
ssexg |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ∈ V ) |
2 |
|
simpr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐵 ∈ 𝑉 ) |
3 |
|
f1oi |
⊢ ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 |
4 |
|
dff1o3 |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1-onto→ 𝐴 ↔ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) |
5 |
3 4
|
mpbi |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 ∧ Fun ◡ ( I ↾ 𝐴 ) ) |
6 |
5
|
simpli |
⊢ ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 |
7 |
|
fof |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –onto→ 𝐴 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ) |
8 |
6 7
|
ax-mp |
⊢ ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 |
9 |
|
fss |
⊢ ( ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
10 |
8 9
|
mpan |
⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ) |
11 |
|
funi |
⊢ Fun I |
12 |
|
cnvi |
⊢ ◡ I = I |
13 |
12
|
funeqi |
⊢ ( Fun ◡ I ↔ Fun I ) |
14 |
11 13
|
mpbir |
⊢ Fun ◡ I |
15 |
|
funres11 |
⊢ ( Fun ◡ I → Fun ◡ ( I ↾ 𝐴 ) ) |
16 |
14 15
|
ax-mp |
⊢ Fun ◡ ( I ↾ 𝐴 ) |
17 |
|
df-f1 |
⊢ ( ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ↔ ( ( I ↾ 𝐴 ) : 𝐴 ⟶ 𝐵 ∧ Fun ◡ ( I ↾ 𝐴 ) ) ) |
18 |
10 16 17
|
sylanblrc |
⊢ ( 𝐴 ⊆ 𝐵 → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
19 |
18
|
adantr |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) |
20 |
|
f1dom2g |
⊢ ( ( 𝐴 ∈ V ∧ 𝐵 ∈ 𝑉 ∧ ( I ↾ 𝐴 ) : 𝐴 –1-1→ 𝐵 ) → 𝐴 ≼ 𝐵 ) |
21 |
1 2 19 20
|
syl3anc |
⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ∈ 𝑉 ) → 𝐴 ≼ 𝐵 ) |
22 |
21
|
expcom |
⊢ ( 𝐵 ∈ 𝑉 → ( 𝐴 ⊆ 𝐵 → 𝐴 ≼ 𝐵 ) ) |