Metamath Proof Explorer


Theorem ssel

Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 5-Aug-1993) Avoid ax-12 . (Revised by SN, 27-May-2024)

Ref Expression
Assertion ssel ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 id ( ( 𝑥𝐴𝑥𝐵 ) → ( 𝑥𝐴𝑥𝐵 ) )
3 2 anim2d ( ( 𝑥𝐴𝑥𝐵 ) → ( ( 𝑥 = 𝐶𝑥𝐴 ) → ( 𝑥 = 𝐶𝑥𝐵 ) ) )
4 3 aleximi ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ( ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐴 ) → ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐵 ) ) )
5 dfclel ( 𝐶𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐴 ) )
6 dfclel ( 𝐶𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐵 ) )
7 4 5 6 3imtr4g ( ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) → ( 𝐶𝐴𝐶𝐵 ) )
8 1 7 sylbi ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )