Description: Membership relationships follow from a subclass relationship. (Contributed by NM, 7-Jun-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ssel2 | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) | |
| 2 | 1 | imp | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐶 ∈ 𝐴 ) → 𝐶 ∈ 𝐵 ) |