Metamath Proof Explorer


Theorem sselOLD

Description: Obsolete version of ssel as of 27-May-2024. (Contributed by NM, 5-Aug-1993) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion sselOLD ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 dfss2 ( 𝐴𝐵 ↔ ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
2 1 biimpi ( 𝐴𝐵 → ∀ 𝑥 ( 𝑥𝐴𝑥𝐵 ) )
3 2 19.21bi ( 𝐴𝐵 → ( 𝑥𝐴𝑥𝐵 ) )
4 3 anim2d ( 𝐴𝐵 → ( ( 𝑥 = 𝐶𝑥𝐴 ) → ( 𝑥 = 𝐶𝑥𝐵 ) ) )
5 4 eximdv ( 𝐴𝐵 → ( ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐴 ) → ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐵 ) ) )
6 dfclel ( 𝐶𝐴 ↔ ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐴 ) )
7 dfclel ( 𝐶𝐵 ↔ ∃ 𝑥 ( 𝑥 = 𝐶𝑥𝐵 ) )
8 5 6 7 3imtr4g ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )