Description: Membership inference from subclass relationship. (Contributed by NM, 14-Dec-2004)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| sseldd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| Assertion | sseldd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseld.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
| 2 | sseldd.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 3 | 1 | sseld | ⊢ ( 𝜑 → ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) ) |
| 4 | 2 3 | mpd | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |