Description: Membership inference from subclass relationship. (Contributed by NM, 25-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseli.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| sselid.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | ||
| Assertion | sselid | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseli.1 | ⊢ 𝐴 ⊆ 𝐵 | |
| 2 | sselid.2 | ⊢ ( 𝜑 → 𝐶 ∈ 𝐴 ) | |
| 3 | 1 | sseli | ⊢ ( 𝐶 ∈ 𝐴 → 𝐶 ∈ 𝐵 ) |
| 4 | 2 3 | syl | ⊢ ( 𝜑 → 𝐶 ∈ 𝐵 ) |