Metamath Proof Explorer


Theorem sselpwd

Description: Elementhood to a power set. (Contributed by Thierry Arnoux, 18-May-2020)

Ref Expression
Hypotheses sselpwd.1 ( 𝜑𝐵𝑉 )
sselpwd.2 ( 𝜑𝐴𝐵 )
Assertion sselpwd ( 𝜑𝐴 ∈ 𝒫 𝐵 )

Proof

Step Hyp Ref Expression
1 sselpwd.1 ( 𝜑𝐵𝑉 )
2 sselpwd.2 ( 𝜑𝐴𝐵 )
3 1 2 ssexd ( 𝜑𝐴 ∈ V )
4 3 2 elpwd ( 𝜑𝐴 ∈ 𝒫 𝐵 )