Step |
Hyp |
Ref |
Expression |
1 |
|
bren |
⊢ ( 𝐴 ≈ 𝐵 ↔ ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 ) |
2 |
|
f1odm |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → dom 𝑓 = 𝐴 ) |
3 |
|
vex |
⊢ 𝑓 ∈ V |
4 |
3
|
dmex |
⊢ dom 𝑓 ∈ V |
5 |
2 4
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐴 ∈ V ) |
6 |
|
pwexg |
⊢ ( 𝐴 ∈ V → 𝒫 𝐴 ∈ V ) |
7 |
|
inex1g |
⊢ ( 𝒫 𝐴 ∈ V → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
8 |
5 6 7
|
3syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
9 |
|
f1ofo |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –onto→ 𝐵 ) |
10 |
|
forn |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
11 |
9 10
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ran 𝑓 = 𝐵 ) |
12 |
3
|
rnex |
⊢ ran 𝑓 ∈ V |
13 |
11 12
|
eqeltrrdi |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝐵 ∈ V ) |
14 |
|
pwexg |
⊢ ( 𝐵 ∈ V → 𝒫 𝐵 ∈ V ) |
15 |
|
inex1g |
⊢ ( 𝒫 𝐵 ∈ V → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
16 |
13 14 15
|
3syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∈ V ) |
17 |
|
f1of1 |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
18 |
17
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑓 : 𝐴 –1-1→ 𝐵 ) |
19 |
13
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝐵 ∈ V ) |
20 |
|
simpr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ⊆ 𝐴 ) |
21 |
|
vex |
⊢ 𝑦 ∈ V |
22 |
21
|
a1i |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → 𝑦 ∈ V ) |
23 |
|
f1imaen2g |
⊢ ( ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝐵 ∈ V ) ∧ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ∈ V ) ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) |
24 |
18 19 20 22 23
|
syl22anc |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑓 “ 𝑦 ) ≈ 𝑦 ) |
25 |
|
entr |
⊢ ( ( ( 𝑓 “ 𝑦 ) ≈ 𝑦 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
26 |
24 25
|
sylan |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
27 |
26
|
expl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
28 |
|
imassrn |
⊢ ( 𝑓 “ 𝑦 ) ⊆ ran 𝑓 |
29 |
28 10
|
sseqtrid |
⊢ ( 𝑓 : 𝐴 –onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
30 |
9 29
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
31 |
27 30
|
jctild |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) → ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) ) |
32 |
|
elin |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
33 |
21
|
elpw |
⊢ ( 𝑦 ∈ 𝒫 𝐴 ↔ 𝑦 ⊆ 𝐴 ) |
34 |
|
breq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ≈ 𝐶 ↔ 𝑦 ≈ 𝐶 ) ) |
35 |
21 34
|
elab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑦 ≈ 𝐶 ) |
36 |
33 35
|
anbi12i |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
37 |
32 36
|
bitri |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑦 ⊆ 𝐴 ∧ 𝑦 ≈ 𝐶 ) ) |
38 |
|
elin |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
39 |
3
|
imaex |
⊢ ( 𝑓 “ 𝑦 ) ∈ V |
40 |
39
|
elpw |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ↔ ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ) |
41 |
|
breq1 |
⊢ ( 𝑥 = ( 𝑓 “ 𝑦 ) → ( 𝑥 ≈ 𝐶 ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
42 |
39 41
|
elab |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) |
43 |
40 42
|
anbi12i |
⊢ ( ( ( 𝑓 “ 𝑦 ) ∈ 𝒫 𝐵 ∧ ( 𝑓 “ 𝑦 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
44 |
38 43
|
bitri |
⊢ ( ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( 𝑓 “ 𝑦 ) ⊆ 𝐵 ∧ ( 𝑓 “ 𝑦 ) ≈ 𝐶 ) ) |
45 |
31 37 44
|
3imtr4g |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( 𝑓 “ 𝑦 ) ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
46 |
|
f1ocnv |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ) |
47 |
|
f1of1 |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) |
48 |
|
f1f1orn |
⊢ ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 ) |
49 |
|
f1of1 |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ ran ◡ 𝑓 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) |
50 |
47 48 49
|
3syl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ) |
51 |
|
vex |
⊢ 𝑧 ∈ V |
52 |
51
|
f1imaen |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ ran ◡ 𝑓 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
53 |
50 52
|
sylan |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ) |
54 |
|
entr |
⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ≈ 𝑧 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
55 |
53 54
|
sylan |
⊢ ( ( ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
56 |
55
|
expl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
57 |
|
f1ofo |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ◡ 𝑓 : 𝐵 –onto→ 𝐴 ) |
58 |
|
imassrn |
⊢ ( ◡ 𝑓 “ 𝑧 ) ⊆ ran ◡ 𝑓 |
59 |
|
forn |
⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ran ◡ 𝑓 = 𝐴 ) |
60 |
58 59
|
sseqtrid |
⊢ ( ◡ 𝑓 : 𝐵 –onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
61 |
57 60
|
syl |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
62 |
56 61
|
jctild |
⊢ ( ◡ 𝑓 : 𝐵 –1-1-onto→ 𝐴 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
63 |
46 62
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) → ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) ) |
64 |
|
elin |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
65 |
51
|
elpw |
⊢ ( 𝑧 ∈ 𝒫 𝐵 ↔ 𝑧 ⊆ 𝐵 ) |
66 |
|
breq1 |
⊢ ( 𝑥 = 𝑧 → ( 𝑥 ≈ 𝐶 ↔ 𝑧 ≈ 𝐶 ) ) |
67 |
51 66
|
elab |
⊢ ( 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ 𝑧 ≈ 𝐶 ) |
68 |
65 67
|
anbi12i |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
69 |
64 68
|
bitri |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≈ 𝐶 ) ) |
70 |
|
elin |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
71 |
3
|
cnvex |
⊢ ◡ 𝑓 ∈ V |
72 |
71
|
imaex |
⊢ ( ◡ 𝑓 “ 𝑧 ) ∈ V |
73 |
72
|
elpw |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ↔ ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ) |
74 |
|
breq1 |
⊢ ( 𝑥 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑥 ≈ 𝐶 ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
75 |
72 74
|
elab |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ↔ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) |
76 |
73 75
|
anbi12i |
⊢ ( ( ( ◡ 𝑓 “ 𝑧 ) ∈ 𝒫 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
77 |
70 76
|
bitri |
⊢ ( ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ↔ ( ( ◡ 𝑓 “ 𝑧 ) ⊆ 𝐴 ∧ ( ◡ 𝑓 “ 𝑧 ) ≈ 𝐶 ) ) |
78 |
63 69 77
|
3imtr4g |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → ( ◡ 𝑓 “ 𝑧 ) ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) |
79 |
|
simpl |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ∈ 𝒫 𝐵 ) |
80 |
79
|
elpwid |
⊢ ( ( 𝑧 ∈ 𝒫 𝐵 ∧ 𝑧 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
81 |
64 80
|
sylbi |
⊢ ( 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑧 ⊆ 𝐵 ) |
82 |
|
imaeq2 |
⊢ ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → ( 𝑓 “ 𝑦 ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
83 |
|
f1orel |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → Rel 𝑓 ) |
84 |
|
dfrel2 |
⊢ ( Rel 𝑓 ↔ ◡ ◡ 𝑓 = 𝑓 ) |
85 |
83 84
|
sylib |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ ◡ 𝑓 = 𝑓 ) |
86 |
85
|
imaeq1d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
87 |
86
|
adantr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) ) |
88 |
46 47
|
syl |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ) |
89 |
|
f1imacnv |
⊢ ( ( ◡ 𝑓 : 𝐵 –1-1→ 𝐴 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
90 |
88 89
|
sylan |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( ◡ ◡ 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
91 |
87 90
|
eqtr3d |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑓 “ ( ◡ 𝑓 “ 𝑧 ) ) = 𝑧 ) |
92 |
82 91
|
sylan9eqr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → ( 𝑓 “ 𝑦 ) = 𝑧 ) |
93 |
92
|
eqcomd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) ∧ 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) |
94 |
93
|
ex |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ⊆ 𝐵 ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
95 |
81 94
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
96 |
95
|
adantrl |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) → 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
97 |
|
simpl |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ∈ 𝒫 𝐴 ) |
98 |
97
|
elpwid |
⊢ ( ( 𝑦 ∈ 𝒫 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
99 |
32 98
|
sylbi |
⊢ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) → 𝑦 ⊆ 𝐴 ) |
100 |
|
imaeq2 |
⊢ ( 𝑧 = ( 𝑓 “ 𝑦 ) → ( ◡ 𝑓 “ 𝑧 ) = ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) ) |
101 |
|
f1imacnv |
⊢ ( ( 𝑓 : 𝐴 –1-1→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) |
102 |
17 101
|
sylan |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( ◡ 𝑓 “ ( 𝑓 “ 𝑦 ) ) = 𝑦 ) |
103 |
100 102
|
sylan9eqr |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → ( ◡ 𝑓 “ 𝑧 ) = 𝑦 ) |
104 |
103
|
eqcomd |
⊢ ( ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) ∧ 𝑧 = ( 𝑓 “ 𝑦 ) ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) |
105 |
104
|
ex |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ⊆ 𝐴 ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
106 |
99 105
|
sylan2 |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
107 |
106
|
adantrr |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑧 = ( 𝑓 “ 𝑦 ) → 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ) ) |
108 |
96 107
|
impbid |
⊢ ( ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) |
109 |
108
|
ex |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑦 ∈ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ∧ 𝑧 ∈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) → ( 𝑦 = ( ◡ 𝑓 “ 𝑧 ) ↔ 𝑧 = ( 𝑓 “ 𝑦 ) ) ) ) |
110 |
8 16 45 78 109
|
en3d |
⊢ ( 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
111 |
110
|
exlimiv |
⊢ ( ∃ 𝑓 𝑓 : 𝐴 –1-1-onto→ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
112 |
1 111
|
sylbi |
⊢ ( 𝐴 ≈ 𝐵 → ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ≈ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) ) |
113 |
|
df-pw |
⊢ 𝒫 𝐴 = { 𝑥 ∣ 𝑥 ⊆ 𝐴 } |
114 |
113
|
ineq1i |
⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
115 |
|
inab |
⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } |
116 |
114 115
|
eqtri |
⊢ ( 𝒫 𝐴 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } |
117 |
|
df-pw |
⊢ 𝒫 𝐵 = { 𝑥 ∣ 𝑥 ⊆ 𝐵 } |
118 |
117
|
ineq1i |
⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) |
119 |
|
inab |
⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐵 } ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } |
120 |
118 119
|
eqtri |
⊢ ( 𝒫 𝐵 ∩ { 𝑥 ∣ 𝑥 ≈ 𝐶 } ) = { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } |
121 |
112 116 120
|
3brtr3g |
⊢ ( 𝐴 ≈ 𝐵 → { 𝑥 ∣ ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≈ 𝐶 ) } ≈ { 𝑥 ∣ ( 𝑥 ⊆ 𝐵 ∧ 𝑥 ≈ 𝐶 ) } ) |