Description: Equality theorem for subclasses. (Contributed by NM, 24-Jun-1993) (Proof shortened by Andrew Salmon, 21-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sseq1 | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 2 | sstr2 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐶 → 𝐵 ⊆ 𝐶 ) ) | |
| 3 | sstr2 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐶 → 𝐴 ⊆ 𝐶 ) ) | |
| 4 | 2 3 | anbiim | ⊢ ( ( 𝐵 ⊆ 𝐴 ∧ 𝐴 ⊆ 𝐵 ) → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
| 5 | 4 | ancoms | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
| 6 | 1 5 | sylbi | ⊢ ( 𝐴 = 𝐵 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |