Metamath Proof Explorer


Theorem sseq12d

Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)

Ref Expression
Hypotheses sseq1d.1 ( 𝜑𝐴 = 𝐵 )
sseq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion sseq12d ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )

Proof

Step Hyp Ref Expression
1 sseq1d.1 ( 𝜑𝐴 = 𝐵 )
2 sseq12d.2 ( 𝜑𝐶 = 𝐷 )
3 1 sseq1d ( 𝜑 → ( 𝐴𝐶𝐵𝐶 ) )
4 2 sseq2d ( 𝜑 → ( 𝐵𝐶𝐵𝐷 ) )
5 3 4 bitrd ( 𝜑 → ( 𝐴𝐶𝐵𝐷 ) )