Description: An equality deduction for the subclass relationship. (Contributed by NM, 31-May-1999)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| sseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | ||
| Assertion | sseq12d | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sseq1d.1 | ⊢ ( 𝜑 → 𝐴 = 𝐵 ) | |
| 2 | sseq12d.2 | ⊢ ( 𝜑 → 𝐶 = 𝐷 ) | |
| 3 | 1 | sseq1d | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐶 ) ) |
| 4 | 2 | sseq2d | ⊢ ( 𝜑 → ( 𝐵 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷 ) ) |
| 5 | 3 4 | bitrd | ⊢ ( 𝜑 → ( 𝐴 ⊆ 𝐶 ↔ 𝐵 ⊆ 𝐷 ) ) |