Metamath Proof Explorer


Theorem sseq1i

Description: An equality inference for the subclass relationship. (Contributed by NM, 18-Aug-1993)

Ref Expression
Hypothesis sseq1i.1 𝐴 = 𝐵
Assertion sseq1i ( 𝐴𝐶𝐵𝐶 )

Proof

Step Hyp Ref Expression
1 sseq1i.1 𝐴 = 𝐵
2 sseq1 ( 𝐴 = 𝐵 → ( 𝐴𝐶𝐵𝐶 ) )
3 1 2 ax-mp ( 𝐴𝐶𝐵𝐶 )