Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | sseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqss | ⊢ ( 𝐴 = 𝐵 ↔ ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) ) | |
| 2 | sstr2 | ⊢ ( 𝐶 ⊆ 𝐴 → ( 𝐴 ⊆ 𝐵 → 𝐶 ⊆ 𝐵 ) ) | |
| 3 | 2 | com12 | ⊢ ( 𝐴 ⊆ 𝐵 → ( 𝐶 ⊆ 𝐴 → 𝐶 ⊆ 𝐵 ) ) |
| 4 | sstr2 | ⊢ ( 𝐶 ⊆ 𝐵 → ( 𝐵 ⊆ 𝐴 → 𝐶 ⊆ 𝐴 ) ) | |
| 5 | 4 | com12 | ⊢ ( 𝐵 ⊆ 𝐴 → ( 𝐶 ⊆ 𝐵 → 𝐶 ⊆ 𝐴 ) ) |
| 6 | 3 5 | anbiim | ⊢ ( ( 𝐴 ⊆ 𝐵 ∧ 𝐵 ⊆ 𝐴 ) → ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) ) |
| 7 | 1 6 | sylbi | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) ) |