Metamath Proof Explorer


Theorem sseq2

Description: Equality theorem for the subclass relationship. (Contributed by NM, 25-Jun-1998)

Ref Expression
Assertion sseq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴𝐶𝐵 ) )

Proof

Step Hyp Ref Expression
1 eqss ( 𝐴 = 𝐵 ↔ ( 𝐴𝐵𝐵𝐴 ) )
2 sstr2 ( 𝐶𝐴 → ( 𝐴𝐵𝐶𝐵 ) )
3 2 com12 ( 𝐴𝐵 → ( 𝐶𝐴𝐶𝐵 ) )
4 sstr2 ( 𝐶𝐵 → ( 𝐵𝐴𝐶𝐴 ) )
5 4 com12 ( 𝐵𝐴 → ( 𝐶𝐵𝐶𝐴 ) )
6 3 5 anbiim ( ( 𝐴𝐵𝐵𝐴 ) → ( 𝐶𝐴𝐶𝐵 ) )
7 1 6 sylbi ( 𝐴 = 𝐵 → ( 𝐶𝐴𝐶𝐵 ) )