Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993)
Ref | Expression | ||
---|---|---|---|
Hypothesis | sseq1i.1 | ⊢ 𝐴 = 𝐵 | |
Assertion | sseq2i | ⊢ ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseq1i.1 | ⊢ 𝐴 = 𝐵 | |
2 | sseq2 | ⊢ ( 𝐴 = 𝐵 → ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) ) | |
3 | 1 2 | ax-mp | ⊢ ( 𝐶 ⊆ 𝐴 ↔ 𝐶 ⊆ 𝐵 ) |