Metamath Proof Explorer


Theorem sseq2i

Description: An equality inference for the subclass relationship. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis sseq1i.1 𝐴 = 𝐵
Assertion sseq2i ( 𝐶𝐴𝐶𝐵 )

Proof

Step Hyp Ref Expression
1 sseq1i.1 𝐴 = 𝐵
2 sseq2 ( 𝐴 = 𝐵 → ( 𝐶𝐴𝐶𝐵 ) )
3 1 2 ax-mp ( 𝐶𝐴𝐶𝐵 )