Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)
Ref | Expression | ||
---|---|---|---|
Hypotheses | sseqtrdi.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
sseqtrdi.2 | ⊢ 𝐵 = 𝐶 | ||
Assertion | sseqtrdi | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | sseqtrdi.1 | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) | |
2 | sseqtrdi.2 | ⊢ 𝐵 = 𝐶 | |
3 | 2 | sseq2i | ⊢ ( 𝐴 ⊆ 𝐵 ↔ 𝐴 ⊆ 𝐶 ) |
4 | 1 3 | sylib | ⊢ ( 𝜑 → 𝐴 ⊆ 𝐶 ) |