Metamath Proof Explorer


Theorem sseqtrdi

Description: A chained subclass and equality deduction. (Contributed by NM, 25-Apr-2004)

Ref Expression
Hypotheses sseqtrdi.1 ( 𝜑𝐴𝐵 )
sseqtrdi.2 𝐵 = 𝐶
Assertion sseqtrdi ( 𝜑𝐴𝐶 )

Proof

Step Hyp Ref Expression
1 sseqtrdi.1 ( 𝜑𝐴𝐵 )
2 sseqtrdi.2 𝐵 = 𝐶
3 2 sseq2i ( 𝐴𝐵𝐴𝐶 )
4 1 3 sylib ( 𝜑𝐴𝐶 )